Spectral element method in time for rapidly actuated systems

نویسندگان

  • Mohammad H. Kurdi
  • Philip S. Beran
چکیده

In this paper, the spectral element (SE) method is applied in time to find the entire time-periodic or transient solution of time-dependent differential equations. The time-periodic solution is computed by enforcing periodicity of the element set. Of particular interest are periodic forcing functions possessing high frequency content. To maintain the spectral accuracy for such forcing functions, an h-refinement scheme is employed near the semi-discontinuity without increasing the number of degrees of freedom. Time discretization by spectral elements is applied initially to a standard form of a set of linear, first-order differential equations subject to harmonic excitation and an excitation admitting rapid variation. Other case studies include the application of the SE approach to parabolic and hyperbolic partial differential equations. The first-order form of these equations is obtained through semi-discretization using conventional finite-element, spectral element and finite-difference schemes. Element clustering (h-refinement) is applied to maintain the high accuracy and efficiency in the region of the forcing function admitting rapid variation. The convergence in time of the method is demonstrated. In some cases, machine precision is obtained with 25 degrees of freedom per cycle. Finally the method is applied to a weakly nonlinear problem with time-periodic solution to demonstrate its future applicability to the analysis of limit-cycle oscillations in aeroelastic systems. Published by Elsevier Inc. PACS: 65D30; 65M06; 65M70; 65M60; 74H45

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rapidly Convergent Nonlinear Transfinite Element Procedure for Transient Thermoelastic Analysis of Temperature-Dependent Functionally Graded Cylinders

In the present paper, the nonlinear transfinite element procedure recently published by the author is improved by introducing an enhanced convergence criterion to significantly reduce the computational run-times. It is known that transformation techniques have been developed mainly for linear systems, only. Due to using a huge number of time steps, employing the conventional time integration me...

متن کامل

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

Time-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection

Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...

متن کامل

Energy Optimization of Under-actuated Crane model for Time-Variant Load Transferring using Optimized Adaptive Combined Hierarchical Sliding Mode Controller

This paper designs an Optimized Adaptive Combined Hierarchical Sliding Mode Controller (OACHSMC) for a time-varying crane model in presence of uncertainties. Uncertainties have always been one of the most important challenges in designing control systems, which include the unknown parameters or un-modeled dynamics in the systems. Sliding mode controller (SMC) is able to compensate the system in...

متن کامل

Dynamic and Static Pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping

In the current study, the effects of Casimir force and squeeze film damping on pull-in instability and dynamic behavior of electrostatically actuated nano and micro electromechanical systems are investigated separately. Linear elastic membrane theory is used to model the static and dynamic behavior of the system for strip, annular and disk geometries. Squeeze film damping is modeled using nonli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008